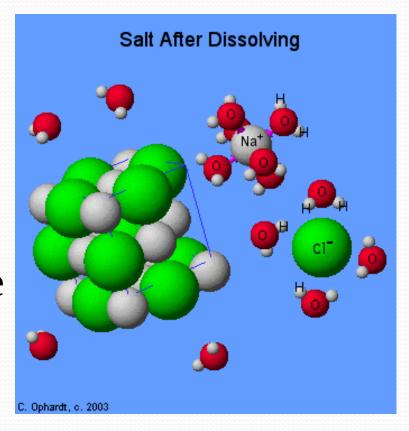
Solutions


Chapter 16

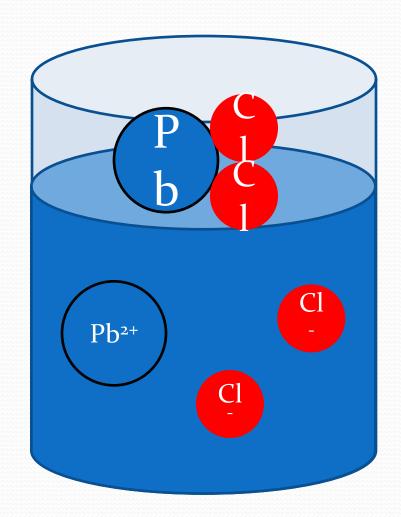
Solutions

- A <u>solution</u> is a <u>homogeneous mixture</u>.
- A <u>solute</u> (usually either a gas or a solid, but sometimes a liquid) is what's *dissolved* into a liquid, called the <u>solvent</u>.
 - Example: Salt water
 - Solute: Salt
 - Solvent: Water
 - Example: Seltzer water
 - Solute: CO₂
 - Solvent: Water

Solutions Up Close

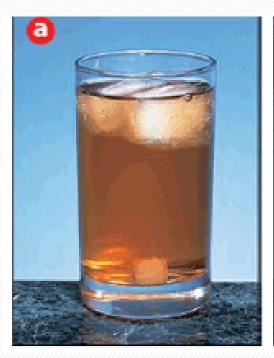
 On a molecular level, when something dissolves, water (or a different solvent) completely surrounds the solute particles.

"Like Dissolves Like"

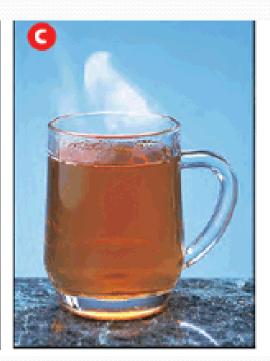

- Non-polar solutes dissolve best in non-polar solvents:
 - Fats, steroids, waxes into benzene, hexane, toluene.
- Polar and ionic solutes dissolve best in polar solvents:
 - Inorganic salts and sugars into water, small alcohols, acetic acid.

Solutions

- Solutions are considered *aqueous*, but the solute does not actually change state.
 - For example, sugar stays a solid when dissolved into tea; carbon dioxide stays a gas in soda.
- <u>Solubility</u> is the word chemists use to describe the maximum amount of solute that can dissolve in a certain quantity of solvent.


IMPORTANT

- Ionic compounds will <u>dissociate</u> (break down) into their component ions in solution.
- Example:
 - NaCl becomes Na⁺ and Cl⁻ in water.
 - PbCl₂ becomes Pb²⁺ and 2Cl⁻ in water.
 - Note that there is a
 <u>coefficient of 2</u> in front of
 Cl⁻, since there are twice as
 many chloride ions as lead
 ions in solution.



Solubility Rate

 Some solvents can hold a lot of a certain substance, some can't hold any.

Solubility Trends

- Solubility of (most) <u>solids</u> <u>increases</u> with:
 - Increase in temperature
 - Increase in surface area

- Solubility of gases increases with:
 - Decrease in temperature
 - Increase in pressure

Therefore...

- Solids dissolve best when:
 - Heated
 - Stirred
 - Ground into small particles

- Gases dissolve best when:
 - Chilled
 - Under high pressure

Gas Dissolution in Soda

 When a soda bottle is capped, vapor pressure above the liquid keeps the carbon dioxide dissolved.

 Opening the bottle decreases the pressure allowing CO₂ to escape.

Aside: The Bends

- "The bends," also known officially as **decompression sickness**, occurs when divers go to extreme depths.
- At these depths, water pressure force-dissolves nitrogen gas into blood vessels.
- If those divers then rise to the surface too quickly, the nitrogen gas bubbles out of the blood (like CO₂ from a freshly-opened soda bottle).
 - These N₂ bubbles restrict oxygen flow and cellular function.
- The result? Crippling pain forcing people to *bend* over, resulting in permanent damage or even death.

Terms to Describe a Stadium

- If a stadium seats 50,000 people and there are 50,000 people there, how do we describe it?
 - At capacity.
- If a stadium seats 50,000 people and there are 49,999 people there, how do we describe it?
 - Under capacity.
- If a stadium seats 50,000 people and there are 60,000 people there, how do we describe it?
 - Over capacity.

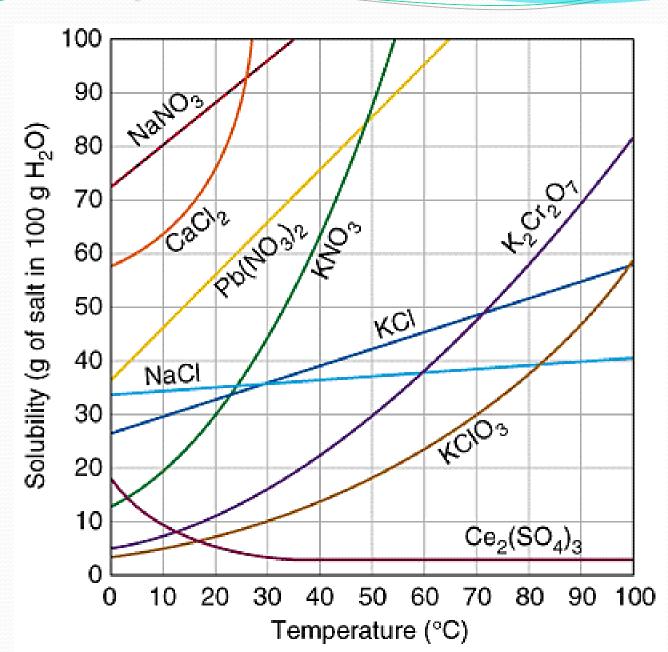
Terms to Describe Solutions

Saturated

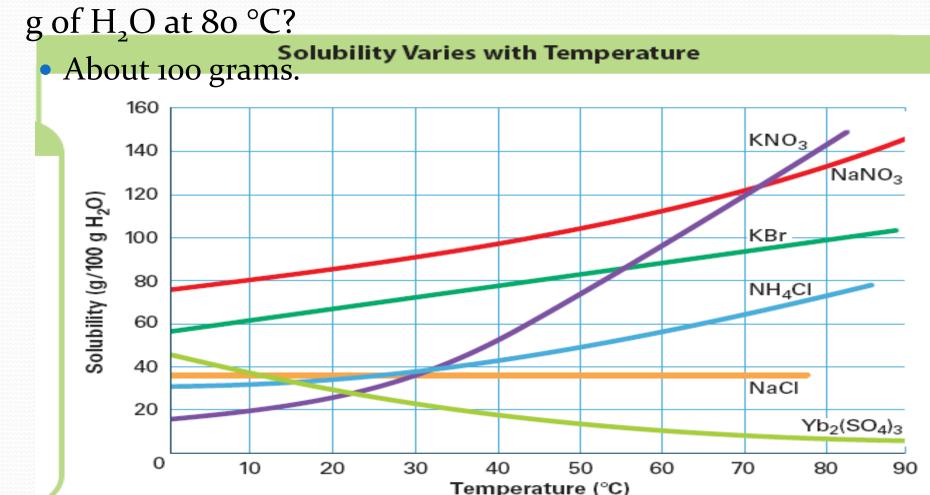
• Full of solute.

Unsaturated

- Not full of solute.
 - It can have some solute, just not the maximum.

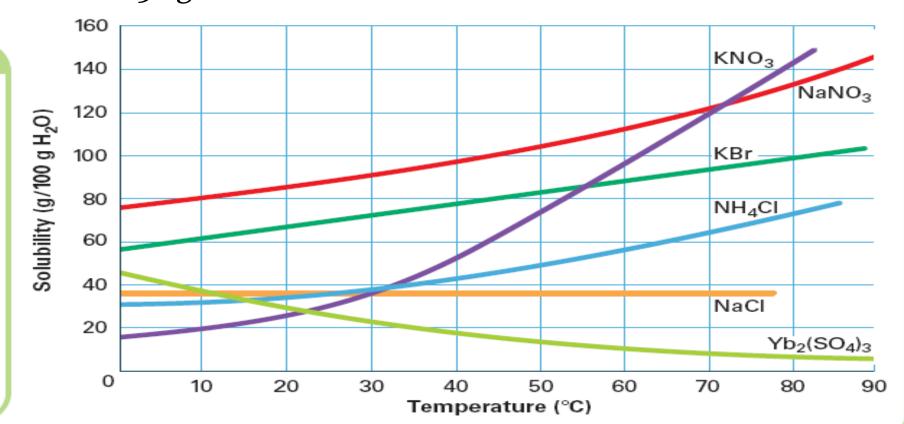

Supersaturated

- More solute than can dissolve (all dissolved).
 - Typically, a supersaturated solution has been heated.


Supersaturated Solutions

- Making a supersaturated solution is like putting 60,000 fans in a 50,000 seat stadium and getting them all in seats.
- Supersaturated solutions aren't very stable. The solute will actually *fall out of solution* (precipitate) if disturbed.
 - AKA those extra 10,000 fans stand up.

• Solubility curves represent the point at which a given quantity of a solvent is saturated at a given temperature.



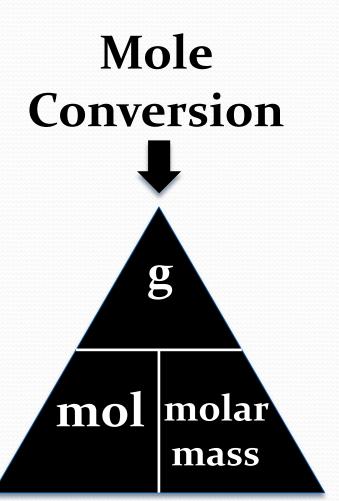
 How much potassium bromide can be dissolved in 100 g of H₂O at 80 °C?

 How much potassium bromide can be dissolved in 150 g of H₂O at 80°C?

• About 150 grams.

Molarity

- At some point this year you may have seen me label acids or other liquids with something like:
 - "6 M HCl"
- The big capital M stands for Molar.
 - 6 M HCl is pronounced "Six molar hydrochloric acid."
- **Molarity** is another way to measure the concentration or dilution of a solution.
 - The higher the molarity, the stronger the solution.


Calculating Molarity

- M is the symbol for Molarity
- The equation:

$$M = \frac{\text{moles of solute}}{\text{liters of solution}}$$

Need a Reminder?

Molarity Equation

Molarity Practice Problem 1

• Intravenous (IV) saline solutions are often administered to patients in the hospital. One saline solution contains 0.90 g NaCl in exactly 100 mL of solution. What is the molarity of the solution?

• Answer: 0.154 M

Molarity Practice Problem 2

• Household laundry bleach is a dilute aqueous solution of sodium hypochlorite (NaClO). How many moles of solute are present in 1.5 L of 0.70 M NaClO?

Answer: 1.05 mol NaClO

Dilutions of Molar Solutions

- Sometimes chemists need to create dilutions using known molarities and volumes.
- For example, during our Baking Soda/HCl lab, I used 6 M HCl. However, the school receives hydrochloric acid in big jugs of 12 M HCl (nasty stuff).

Molar Dilutions

 Because we're not changing how much solute is around during a dilution (we're just adding water, the solvent), we can use the following formula:

•
$$M_1V_1 = M_2V_2$$

No change in the number of moles of solute!

Molar Dilution Practice Problem 1

How many milliliters of aqueous 2.00 M MgSO₄ solution must be diluted with water to prepare 100.0 mL of aqueous 0.500 M MgSO₄?

• Answer: $V_1 = 25 \text{ mL}$

Molar Dilution Practice Problem 2

 You put 2 moles of HCl into 312 mL of water. If you wanted to make a 1 M dilution, how many milliliters would you need to dilute with water?

• Answer: $V_2 = 2000 \text{ mL}$

Computer Practice

- Okay, now it's time to do a little reinforcement using the computers.
- Head to *Quia* and open the quiz called:
 - Salts and Solubility
- From there, it's a pretty self-explanatory quiz that will have you visiting another page at the same time (PhET, an awesome website).
- You will be looking at various salts dissolving into water and making molarity calculations based on them.